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Viscous stretching of a cigar-shaped drop due to the centrifugal pressure field in a 
surrounding rapidly rotating denser fluid is analysed. Scaling arguments are used to 
examine the various contributions to the viscous stresses resisting deformation, and 
a number of asymptotic regimes are identified which are delineated by the relative 
magnitudes of the aspect ratio, the viscosity ratio and unity. These asymptotic regimes 
may usefully be described as the bubble, pipe, sliding-rod and toffee-strand limits. 
Detailed analysis based upon a slenderness assumption combined with an integral 
representation of Stokes equations is used to derive evolution equations for the shape 
of the drop as a function of time in the different regimes. In the limit that interfacial- 
tension effects are negligible, similarity solutions are developed in which the length of 
the drop is found to increase as t 2 / 5 ,  t'I4, ( t  In t) ' /4 and t. The analytical results are in 
good agreement with numerical simulations based upon a boundary-integral solution 
to the full viscous flow equations. 

1. Introduction 
When a spherical drop of one fluid is placed on the axis of a rotating immiscible 

fluid of greater density the drop is deformed, indeed it is 'squeezed', by the centrifugal 
pressure field of the surrounding dense fluid. The drop thus extends along the 
direction of the rotation axis. A steady equilibrium state of rigid rotation is eventually 
established in which the centrifugal stresses driving deformation are exactly balanced 
by the stresses due to interfacial tension which resist further deformation. The 
equilibrium shape is thus prolate (cigar-shaped), and if surface tension is weak 
compared with centrifugal pressure in the dimensionless sense defined below, then 
the shape will be long and slender. In this paper we use lubrication theory and 
boundary-integral calculations to study the transient distortion of a drop toward 
this slender shape. Scaling laws for the stretching and thinning rates and similarity 
solutions for the drop shape are developed for a range of viscosity ratios of the inner 
to outer fluids, and a number of distinct asymptotic regimes are identified. 

The basic phenomenon of interfacial distortion due to the centrifugal pressure in 
a rotating fluid is utilized in spinning-drop tensiometers to determine the interfacial 
tension between two liquids from the final equilibrium drop shape (Vonnegut 1942). 
If the fluids are very viscous then some extrapolation of the slow transient distortion 
may be necessary to determine the equilibrium shape (Elmendorp & De Vos 1986). 
More recently, the spinning-drop tensiometer has been used to study the rheological 
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properties of liquids by examining the transient distortion of a slender drop under 
the assumption that the dynamical response is similar to that of a drop placed in 
a viscous extensional flow (Hsu & Flumerfelt 1975; Joseph et al. 1992). The initial 
transient deformation of a nearly spherical drop in the viscous flow generated by 
the actual centrifugal pressure field has also been described recently (Stone & Bush 
1996). Direct numerical simulation of the full Navier-Stokes equations using a finite- 
element method has incorporated the geometry of a typical spinning-drop device (Hu 
& Joseph 1994). 

The previous analytical investigations either evaded the difficulties of describing 
the actual centrifugal forcing or assumed the approximate form of the external flow 
or drop shape. In this paper we study the time-dependent stretching process. The 
important dynamical balance is between the centrifugal driving force and viscous 
forces acting inside and outside the drop. The lubrication approximation is first 
used to study the case of highly distorted slender drops that are still far from the 
equilibrium shape eventually established by surface tension. Similarity solutions are 
developed, and the radius and length of the drop are shown to evolve according 
to simple power laws whose detailed form depends on the viscosity ratio between 
the two fluids and the aspect ratio of the drop. The lubrication analysis is also 
used to study drop deformation in a cylindrical sleeve typical of the container of a 
spinning-drop tensiometer. The case of very viscous drops is treated separately using 
the viscous-thread equations. A numerical solution based on the boundary-integral 
method and incorporating the effects of interfacial tension is then used to study the 
transient distortion of a drop in an unbounded fluid and the results show excellent 
agreement with the lubrication analysis for the cases in which interfacial tension is 
weak. 

A common application of the lubrication approximation to free-boundary problems 
has been to the study of spreading gravity currents where the driving force is the 
difference in hydrostatic pressure between the current and the surrounding fluid (e.g. 
Huppert 1982; Lister & Kerr 1989). In such cases an initially hemispherical or 
spherical drop spreads over a surface or at a fluid-fluid interface into an oblate 
(pancake-like) shape, which is geometrically unlike the centrifugally driven prolate 
shapes of interest here. Nevertheless, to analyse completely either buoyancy-driven 
or centrifugally driven spreading, it is necessary to study viscous effects internal 
and external to the spreading drop. (Similar considerations apply to a drop in a 
straining flow. e.g. Taylor 1964.) A recent study of buoyancy-driven spreading of a 
drop beneath a planar free surface (Koch & Koch 1995) also used a combination of 
boundary-integral and lubrication analyses to study large deformation of flattened 
drops as a function of the viscosity ratio and aspect ratio. Our work has mathematical 
similarities with the study by Koch & Koch and the spun drops might be thought of 
as cylindrical gravity currents in a radial, rather than unidirectional, gravity field. 

2. Problem statement 
Consider the deformation of an initially spherical drop in a rapidly rotating viscous 

fluid. Let the drop have density p - Ap and viscosity Ap and the suspending fluid have 
density p and viscosity p (figure 1). Assume that Ap > 0 so that upon rotation the 
drop is aligned with, and extended along, the rotation axis and let the undeformed 
radius of the drop be R so that its volume is V = $R3. The interfacial tension, 
denoted by y ,  is assumed to be constant. 

Cylindrical coordinates ( r ,  0, z) are used, where the z-axis is defined by the angular 
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FIGURE 1. Deformation by centrifugal action of an initially spherical drop suspended in a rapidly 
rotating fluid of greater density. 

velocity SL. We shall only consider the deformation of axisymmetric shapes since both 
the centrifugal pressure and surface tension act in such a way that non-axisymmetric 
perturbations are expected to decay. For the prolate shapes that are formed by the 
action of rotation, we denote the radial location of the interface by a(z,t), the drop 
length by 2/(t) and the equatorial radius by ao(t) = a(0, t).  

It is convenient to study this incompressible flow problem relative to a coordinate 
system rotating with angular velocity f2 (see e.g. Batchelor 1967, pp. 139-140). For 
the viscously dominated flow limit of interest here, local (duldt),  convective (u * Vu) 
and Coriolis (f2 A u) accelerations are assumed to be negligible so that the Stokes 
equations, 

v . ~ = A ~ v ~ u - v ~ = o ,  V . U = O  for X E  v (1) 
v.&= p ~ ~ i i - v j j = o ,  v. i i=o for X E P ,  (2) 

apply in the two phases. Her: a denotes the stress tensor, x is the position vector, V 
the interior of the drop and V the exterior. The modified pressure p = pf - i p l f 2  AxI2 
is the fluid pressure pf less the centrifugal contribution, and hence the centrifugal 
forcing only appears in the normal-stress boundary condition. Thus gravitational 
buoyancy is assumed to be negligible in comparison with the centrifugal forces, which 
requires R Q 2 / g  >> 1. The boundary conditions on the fluid-fluid interface S are 

u = i i ,  1n.an = n . & - n . a =  y v , - n + j ~ p 1 n ~ X , 1 ~ ) n ,  X , E S ,  (3) ( 
where n is the unit normal away from the drop domain V (figure 1) and V, - n 
represents the mean curvature of the interface. Far from the interface, or along any 
rigidly corotating container boundaries, the fluid velocity (measured relative to the 
rotating frame) vanishes. 

Conditions for the neglect of the acceleration terms in (1) and (2) can be established 
by scale estimates. Assuming for the moment a nearly spherical shape, fluid motion 
is driven by the centrifugal pressure O ( A p 0 2 R 2 )  and is resisted by viscous stresses 
O ( p u / R ) .  Hence, a typical radial or axial velocity has magnitude u N ApQ2R3/p .  
Coriolis forces associated with the radial motion produce a swirl velocity with typical 
magnitude uo 1: pQR2u/p = u F ,  where the Taylor number 5 = p Q R 2 / p .  Thus 
the approximation of a viscously dominated flow is reasonable provided that the 
Reynolds numbers p u R / p  and pu&p are both small, which reduce, respectively, 
to p A p 0 2 R 4 / y 2  << 1 and p2ApQ3R6/p3 << 1, or equivalently ( A p l p )  F2 << 1 and 
( A p l p )  F3 << 1. It may be noted that weaker conditions apply when the drop has 
an extended slender shape. 

The drop extends into a prolate shape with monotonically decreasing equatorial 
radius ao(t) until a static balance is established between the centrifugal pressure 
O ( ~ A p Q 2 a ~ )  and the stresses due to interfacial tension 0(2y/a,) at the ends of the 
drop (Rosenthal 1962), where a, denotes the equilibrium equatorial radius of the 
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extended drop. The static shapes may be described by the rotational Bond number 

Ap!L2R3 

Y 
B =  (4) 

Indeed, for the highly distorted slender shapes expected at large Bond numbers, 
the above simple order-of-magnitude estimates for the stresses, along with volume 
conservation ( 4nR3 = 0(2na3te)), predict an equilibrium radius a, and half-length t, 
given by 

e, (23??)2/3 
-N-  

at? 
R R -  6 ’ 
- 2i (4/B)li3, 

These results are actually in perfect agreement with detailed calculations (Rosenthal 
1962) since the equilibrium shape for B >> 1 is almost a cylinder with spherical 
endcaps of radius a,. Equation ( 5 )  shows that neglect of surface tension in an analysis 
of the global extension of a drop is valid if B >> t /ao .  Surface tension will have a 
local influence at the end of the drop if the radius of curvature there, which need not 
be O(ao), falls to a value comparable to / /B .  

We are primarily concerned in this paper with transient deformation towards 
the highly distorted shapes characteristic of B >> 1. Scaling arguments for the time- 
dependent stretching rates when the dominant resistance is viscous and B >> / /a0 >> 1 
are described in $3 and detailed solutions are derived in $94-6. Small-deformation 
theory for the time-dependent shapes characteristic of the less interesting limit B << 1 
is described by Stone & Bush (1996). In general, the intermediate situation in which 
B = O( 1) and the situation in which / /a0 = O ( B )  both require numerical solutions, 
examples of which are provided in $7. 

3. Scaling analyses for slender shapes 
We consider two configurations: an unbounded geometry and a drop centred in a 
cylindrical container. The drop is assumed to be long and slender with equatorial 
radius a. much less than the half-length 8. Estimates for the rates of elongation 
and thinning are established by seeking a balance between the centrifugal pressure 
~ A p a ’ u ~  multiplied by the area O(7cai) over which it acts and the largest resisting 
viscous stress multiplied by the area over which it acts. The largest viscous stress is 
found to depend on both the viscosity ratio I I  and the aspect ratio //ao. For clarity 
and simplicity we will retain multiplicative constants, such as 27c and :7c, in areas and 
volumes in the text but drop them in the displayed equations for t ( t )  etc. (If they are 
retained throughout then the scaling estimates of the multiplicative coefficients in e(t) 
are found to be in reasonable agreement with the actual values obtained from the 
detailed analyses presented later.) We first consider the unbounded configurations in 
993.1-3.3 and briefly describe the bounded case in 93.4. The transition times between 
the different dynamical limits are summarized in 93.5. 

3.1. Low viscosity ratios: I I  << ao/e << 1 
For sufficiently low viscosity ratios 1, rearrangement of the internal fluid as the 
drop extends generates less viscous dissipation than deformation of the external fluid. 
Hence, owing to the distribution of centrifugal pressure, we expect the shape of a 
low-viscosity-ratio, nearly inviscid, drop to be that of a circular near-cylinder with 
domed endcaps. The primary resistance to deformation is associated with pushing 
fluid out of the way of the advancing endcaps of the drop as it extends. 
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A force balance in the neighbourhood of the nose, which has radius O(ao), surface 
area O(27cai) and moves at velocity U = d//dt, is 27cai.pU/ao 1: iApQ2ai.7cai. Using 
the volume constraint in the approximate form 27caiG 1: V and estimating U 1: G/t 
yields the time-dependent length and radius of the drop 

An estimate of the neglected viscous dissipation inside the drop and along the 
cylindrical boundary of the drop shows that the estimates (6) are appropriate when 
I I  << ao/t  << 1. We thus note that, for a given small viscosity ratio il > 0, the shape 
evolves according to (6) for early times but eventually ao/G < 1 and it is necessary 
to account for the viscous shear stresses along the length of the drop, as we now 
describe. 

3.2. Intermediate viscosity ratios: ao// << il << (//ao)' /In ( / /ao) 

For more viscous inclusions, the shear stresses generated by movement of the internal 
fluid along the axis towards the ends of the drop are important and a pressure gradient 
iApQ2ai / /  is established along the (half) length of the drop. The internal shear occurs 
on a lengthscale O(ao), whereas analysis of the axial motion of a slender body with 
radius a0 and length G shows that the external shear occurs on the somewhat larger 
scale O(a0 ln(//ao)) (see, for example, Batchelor 1970, Cox 1970 or the logarithms that 
arise in other biharmonic and Laplacian problems in a nearly cylindrical geometries). 
Which of these shears gives the dominant contribution to U ,  if either, depends on the 
relative magnitudes of il and 1/ ln(t/ao). 

For the case I I  << l/ln(G/ao) the internal shear is dominant, the effective viscous 
shear stress is O(ilpU/ao), the total viscous resistance along the length of the drop is 
0(27cao/. IIpU/ao) and thus the rates of extension and thinning are 

For the converse case ,I >> l/ln(//ao), similar estimates may be used to argue that 

where ? = p/ApQ2V2I3 and the factors ln(t/?) arise from a leading-order estimate of 
ln(G/ao), which is assumed to be much greater than 1. 

Estimates for the magnitude of the neglected dissipation show that (7) or (8) is a 
valid approximation provided ao/G << I I  << ( G / u o ) ~  /In (G/ao), which spans a large 
range of viscosity ratios for highly extended drops. The factor In ( t / uo )  may not be 
very large, even for an extended drop, and, for simplicity, we will sometimes omit it 
when writing bounds on I I  though we will retain it when keeping track of detailed 
error estimates in the lubrication analyses. 

3.3. High viscosity ratios: 1 >> ( ~ / a o ) ~  / ln ( t /uo> >> 1 
Sufficiently viscous extended drops resist deformation under the centrifugal pressure 
primarily owing to internal axial velocity gradients. The deformation is analogous 
to the stretching of a piece of toffee. In this case a balance of the centrifugal 
pressure against an extensional viscous stress based on a strain rate U/G gives 
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~ A p Q 2 a ~  2: 3ApU/L, which leads to stretching and thinning according to 
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The neglect of the external viscous shear stresses, which act over the surface area 
of the drop, in comparison to the internal extensional stresses, which act over the 
cross-section, (27caof. pU/ao << nut . 1pU/L'), limits these estimates of the evolution 
of the drop to A >> ( I P / U ~ ) ~ .  Hence, as in 33.1, the stretching and thinning estimates 
of slender shapes given by (9) are limited to 'early' times, and they eventually become 
inapplicable when large aspect ratios ( P / u o ) ~  >> A are attained, after which the shape 
changes according to (8). 

3.4. Elongation in a corotating rigid cylinder 
Equations (6)-(9) require little modification for drops spreading along the axis of 
a rotating fluid-filled cylinder of radius A provided that the cylinder walls are not 
so close to the drop as to significantly change the scaling estimate of the viscous 
resistance. A sufficient condition is A >> ao, though this can be relaxed a little for the 
cases of high and low viscosity ratios at the expense of imposing tighter conditions 
on A. For the case of intermediate viscosity ratios, the only modification to the stress 
balance, and hence to (8), is that the external gradients occur on the lengthscale 
O(ao ln(A/ao)), which is the appropriate scale for velocity variations as obtained, for 
example, in the textbook problem of a circular rod sliding axially along the centreline 
of a fluid-filled cylinder (e.g. Happel & Brenner 1983, p. 341). 

3.5. Transition times 
In the preceding sections we derived scaling estimates for the dimensions of a spun 
drop, which are appropriate in various asymptotic regimes defined by the relative 
magnitudes of 1, / / ao ,  Al l2 ,  A-l, ellA and a. Since [ / a o  is an increasing function of time, 
a drop will typically pass through several of these asymptotic regimes as it extends 
(figure 2). In all cases when [ /a0 NN 1 the shape can be described by small-deformation 
theory (Stone & Bush 1996). If A9 >> 1 the drop extends until [/a0 = O(L8). The 
detailed time-dependent response during large deformation depends on the magnitude 
of A. 

If A << 1 there is an intermediate regime in which A-' >> [ / ao  >> 1, resistance is 
dominated by normal stresses in the external fluid on the ends of the drop and axial 
extension proceeds according to (6). If 1 >> 1 there is an alternative intermediate 
regime in which 1 >> ( t / a ~ ) ~  >> 1, resistance is dominated by extensional stresses 
in the drop and extension proceeds according to (9). In each case, provided that 
28 >> I-' or All2,  as appropriate, the flow makes a transition to a regime in which 
28 >> [ / a o  >> Ap1 ,1 l l2 ,  resistance is dominated by shear stresses along the length of 
the drop and extension proceeds according to (7) or (8). The transition from (6) to 
(7) occurs when [/a0 = O ( t ' )  or 

Similarly, 

t -  

the transition from (9) to (8) occurs when ( t /u~)~/ ln(e/ao)  = O(1) or 
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If 1-' >> 99 >> 1 or All2 >> &? >> 1 the equilibrium (5) is attained before the relevant 
transition to (7) or (8) is attained. Alternatively, if neither 1-1 >> 1 nor 11/2 >> 1 then 
there is no intermediate regime and extension proceeds according to (7) or (8) while 
99 >> [/a0 >> 1, until equilibrium is attained after a time 

Equilibrium 
+B124 

a,, 1-B/12 
-N- 

4. Lubrication analyses - intermediate viscosity ratios 
In this section the lubrication approximation is used to study the evolution of a 
slender extending drop in the regime of intermediate viscosity ratios ao/8 << A << 
(8/ao)2/ ln(t/ao). The effects of interfacial tension are neglected. Because of the 
approximations made in these analyses, the detailed predictions are expected to be 
inaccurate in the immediate neighbourhood of the nose of the drop. Experience from 
previous problems (Huppert 1982; Lister & Kerr 1989; Koch & Koch 1995) suggests 
that the local error at the nose of the flow has a negligible effect on the global 
dynamics and on the solution away from the nose. 

We wish to construct approximate solutions to (1)-(3) for the cases of a drop in 
an unbounded geometry and of a drop in a rotating rigid cylindrical container. The 
latter configuration is more straightforward as standard lubrication ideas may be 
applied directly. 

It is convenient in the detailed analysis to scale all lengths by the undeformed drop 
radius R, velocities by the representative value Apfi2R3/p, time by the convective 
scale p/ApQ2R2 and pressures by ApQ2R2. To maintain a simple notation, we will 
denote all variables, now dimensionless, by the same symbols as in &1-3. 

4.1. Drop deformation in an unbounded ju id  
Consider the transient fluid motion that is generated when a slender drop with 
ao(t) << [ ( t )  extends, owing to centrifugal stresses, along the axis of an unbounded 
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rotating fluid. In general, away from the ends of the drop axial derivatives scale as 
/-’ and radial derivatives as a;’. Also, the radial velocities are much smaller than 
the axial velocities since u, = O(u,ao/t). 

The external fluid responds as a boundary-driven flow so that the external dynamic 
pressure gradient is small for positions away from the ends of the drop. It follows from 
the normal stress balance at the interface that the internal pressure is centrifugally 
dominated and hence that the internal flow is driven by the axial pressure gradient 

where the (dimensionless function) a(z, t )  describes the shape of the drop. Thus, from 
the z-component of the equation of motion (l), the internal flow is given by 

uZ(r ,z , t )  = U(z , t )  + 
where U(z , t )  is the centreline velocity in the drop. Integration of the continuity 
equation for the internal flow and use of (14) leads to the evolution equation 

aa2 a 1 a2a6 
at a Z  4 8 ~  a z 2  
- + - (Ua’) + -- = o 

for the cross-sectional area of the drop u2(z, t).  While local lubrication analysis of 
the internal flow is sufficient to derive the parabolic profile in (14) of relative motion 
within the drop, the absolute motion, such as the centreline velocity U(z ,  t ) ,  can only 
be obtained by a more global analysis that includes the external flow. 

Our approach, which uses an integral representation of the motion, is similar in 
spirit to that used by Lister & Kerr (1989) to study the spread of a thin gravity 
current along the interface between two stably stratified viscous fluids. We note that 
in Lister & Kerr’s analysis, the parabolic contribution to the internal velocity profile 
(analogous to the second term in (14) above) was smaller than the velocity at the 
surface of the gravity current by a factor h/&, where h was the typical thickness 
of the current. The reason for the small variation in internal velocity is that for 
‘pancake-like’ spreading the external velocity varies over a distance O(t) .  It follows 
from the tangential stress balance that, for fluids of comparable viscosities, the scale of 
variation within the current is also O ( t )  and hence the velocity difference across a thin 
spreading current of thickness h is only O ( h / t ) .  However, for the case considered in 
this section, in which cigar-like shapes are formed and the fluid viscosities are not too 
dissimilar, while the internal velocity gradients still occur on the scale of the thickness 
ao, the external velocity gradients occur over the radial distance O ( 6  In(t/ao)) rather 
than the lengthscale of the drop O ( t )  (Cox 1970). This implies that the parabolic 
contribution to the internal flow in (14) is comparable in magnitude to the axial 
velocity U(z ,  t) to within a weak logarithmic factor of the aspect ratio. 

In order to determine U(z ,  t ) ,  we begin with the exact representation for the Stokes 
flow external and internal to a fluid drop (Rallison & Acrivos 1978; Pozrikidis 1992; 
Manga & Stone 1993) 

(x E V )  + i ) U ( X , )  (X, E S) (16) 
Y W t )  I Y W t )  (x E P) 

- / [n.cJ . J  dS, + (1 - 1)  
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where 
3 rrr 

471 r5 
, K ( r ) = - - - ,  r = x - y  

and dS, is the scalar area element on S ( t )  at position y .  For the axisymmetric shapes 
under consideration, the unit normal n into the external fluid and the surface position 
y can be written 

and 
y = (a(?, t )  cos 6, a(?& t )  sin 6,Z). I 

In the absence of interfacial tension, [n a] = ia’n. 
We obtain the centreline velocity U ( z ,  t )  by evaluating the axial component of (16) 

at x = (0, 0, z )  E V to an accuracy consistent with the lubrication approximation used 
to derive (14). As shown in Appendix A, sA.1, when t >> a 

where u,(a,z,t)ez is the axial velocity evaluated on the interface. The error term 
in (19) is calculated explicitly in Appendix A, sA.2 for use in $5, since it makes a 
leading-order contribution when the viscosity ratio is sufficiently high. 

Thus, after a little algebra (16) yields 

a3 dz 

(20) 

1 asp? ( z  - ?)a + ( z  - z)2aa/az 
2U(z, t )  = 1 J”” [ + 

8 -w [a’ + ( z  - 3 2 1  1/2 [a’ + ( z  - z)’] 3/2 

+ (2 - 1)  u, ( a h  t ) ,  z ,  t )  7 

which may be simplified by integrating by parts and using (14) to obtain 

a2 aa2 
dZ +(A - 1)--. 

1 a3aa/az 
U(z , t )  = -- 

4 -m [a’ + ( z  - z)’] l/’ 82 dz 

Substitution of (21) into (15) yields 

For given initial conditions, (22) is sufficient to determine the evolution of the shape 
a(z, t )  of the drop, which also satisfies the dimensionless volume constraint 

The integral in (22) may be evaluated asymptotically when a << t (e.g. Hinch 1991, 
pp. 40-42) to give 

where e(t)  is a time-dependent slenderness parameter, which at leading order can be 
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defined to be simply the aspect ratio 
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44 = ao(t)/t(t) * (25) 

(The next-order corrections, to (24) and (25) and to subsequent results, are derived 
in Appendix B.) Substituting (24) into (22) and assuming for the moment that 
ln(c-') >> A-', we obtain 

Based upon the scaling argument presented in $3.2, we expect a 'pseudo' similarity 
solution (recall the lnt behaviour in equation (8)) and so we define new variables H 
and y by 

Z 
a2(z,t) = qn(t)t-'I4 H(q;e(t)) and q = ~ 

qn(t)t'/4' 

where qn(t)  = t(t)/t1i4 so that the end of the drop is at q = 1. It is expected that H 
depends primarily on q and so we will treat In(€-') as a slowly varying 'constant'. 

Equations (26) and (23) then lead to 

and 

The second and third terms on the left-hand side of (28) may be neglected since they 
have magnitude 0 (1/ In (e-I)) relative to the retained terms, as can be verified from 
the solutions for H ( q ; e ( t ) )  and y,(t) given below. 

We integrate (28) twice, evaluating the constants of integration from the condition 
that H -+ 0 as y~ -+ 1, to obtain first 

and then 

In approximating (22) by (26) we assumed that In(€-') >> 1-'. However, it is little 
trouble to avoid this assumption and retain the third term in (22) since it has the 
same form as the right-hand side of (26). The dimensionless length and radius of the 
drop can then be shown to evolve according to the implicit relations 

(33) 

These equations, which apply when ao/ t  << 1 << ( t /a~)~/ ln( t /ao) ,  imply the asymp- 
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totic behaviour d ( t )  = 0 ( t  In t)'/4 and ao( t )  = 0 ( t  In t)-'/* when ln(c-') >> i-', 1, and 
d ( t )  = 0 ( t 1 I 4 )  and ao(t) = O(t- ' / s )  when 1 << In(€-') << i-' as argued in $3. 

4.2. Drop deformation in a corotating cylindrical container 
We now consider a drop extending along the axis of a rotating fluid-filled container 
as occurs in a spinning-drop tensiometer. The lubrication approximation is applied 
which should be quite reasonable provided the motion is slow (in the sense defined in 
the introduction) and the half-length of the drop e is greater than the radius A of the 
bounding cylinder. The fluid motion is predominantly parallel to the rotation axis as 
centrifugal pressures act to extend the lighter drop fluid. We study the quasi-steady 
motions interior to the drop and in the cylindrical annulus between the drop and the 
container boundaries. Extensional stresses due to the axial derivatives of velocity are 
neglected relative to the shear stresses due to the radial derivatives, which limits the 
results to i << 

Under the lubrication approximation the (dimensionless) axial velocity satisfies 

with boundary conditions on the velocity and the tangential and normal stresses in 
the form 

a , = O  a t r = A  

u, bounded as r + 0 

u, = a, at r = a ( z , t )  

au, aa, 
ar ar  

A- = - at r = a ( z , t )  

p - $ = ;a2 at r = a(z, t ) .  
Mass conservation requires that at any axial position z 

+,t) A 

I 4 4  
u,(r, z ,  t )  r dr + J Gz(r, z, t )  r dr = 0. 

Integration of (35) and (36) subject to (37) and (38) yields 

(37) 

u,(r, z ,  t )  = -- ( A  - 1)(a2 - A ~ )  + 2a2 In - + -(r2 A - a2)  } , 
a,(r, z, t )  = - - ( A  - l ) ( r2  - A ~ )  + 2a2 In - 

(39) 8 aa2 aZ { 
8 aa2 aZ { 

(3 i 
(2 1 

where 
(A2 - a2)* 

A =  
A4 - ( 1  - A-')a4 ' 

Integration of the continuity equation for the interior flow then gives 
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which may be evaluated using (39) to obtain the equation 
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for the evolution of the drop. A ‘dam-break‘ solution to (43) with a = O(A) is given 
in Appendix C. 

In the limit a << A, (43) reduces substantially to 

which has a similar structure to (26). Accordingly, we again seek a pseudo-similarity 
solution of the form (27), but now with e(t)  = ao(t)/A instead of ao(t) / t ( t ) .  After 
neglecting terms of relative magnitude 1/  1n(c1), we obtain 

d In(€-’) d2H3 
- -(yH) = ~- 

drl 3 dy2 ’ (45) 

which is the same as the leading-order approximation to (28). It follows that, allowing 
for the possibility that ln(A/ao) may not dominate the asymptotic behaviour of 
a drop enclosed in a corotating cylinder is given by the implicit relations 

The higher-order corrections to (46) and (47) are not, however, of the same form as 
those to (33) and (34). 

5. Toffee strand - large viscosity ratios 
As can be seen from (19), the analysis of $4.1 is inappropriate when il >> 

( t / a ~ ) ~ /  ln(t/ao) since some of the terms neglected in the lubrication approxima- 
tion are leading order. While it is possible to analyse this regime by a systematic 
asymptotic expansion of the integral representation (16), as described in Appendix A, 
5A.2, it is more straightforward to use some of the insights gained from the scalings 
in 53.3 and treat the drop as an extending viscous thread. 

Provided that il >> ( t /~ , )~/ ln( t /ao) ,  the viscous resistance of the external fluid 
can be neglected in comparison with the viscous resistance associated with internal 
deformation of the drop. Provided also that {/a0 >> 1, the deformation of the drop 
is given asymptotically by local uniaxial extension along the rotation axis, driven 
by the radial centrifugal pressure :a2 (in the dimensionless variables defined in $4) 
with a resistance proportional to the extensional, or Trouton, viscosity 3ilp (e.g. Bird, 
Armstrong & Hassager 1977, p. 30). One-dimensional approximations for viscous 
threads have been derived in several contexts and, following for example Eggers 
(1995), it is straightforward to derive the coupled equations 

aa2 a 
- + - (ua2) = 0, 
at aZ 
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for the radius of the thread and the axial velocity profile U(z, t ) .  

remains finite as a + 0 at the end of the thread gives 
One integration of (49) subject to the boundary condition that the rate of strain 

dU(z , t )  - a2 
a z  121 

Integration from the centre of the drop yields 

1 '  
U ( z ,  t )  = 121 1 a2(2, t )  d2. 

Putting z = / in (51) and using (23), we find that 

t 
/ ( t )  = + const. 

From (48) and (50), the shape of the drop evolves according to 

a4 (L + U(z , t ) -  a = -- aZ a )  121' 

which can be integrated to 

) - I ,  ( 121 
U2(Z*,  0)t  

a2(2, t )  = a2(z*,0) 1 + 

(53) 

(54) 

where z* satisfies 

(55) 
z - z *  
-- - U(z , t )  = U(Z',O). 

t 
From (51) U is monotonic in z and so (53) cannot form shocks. As t -+ 00, equations 
(52)-(55) may be used to show that 

Z 122 
t 7  t 

U - -  a2--. 

Equations (52) and (56) constitute the asymptotic similarity solution for this regime. 

6. Bubble - low viscosity ratios 
For low viscosity ratios, 2 << ao/ t ,  the dominant control on the extension of the 

drop is associated with the resistance of the external fluid to the advance of the 
propagating nose. In this regime viscous stresses within the drop are negligible and 
so the modified internal pressure p is uniform. Away from the ends of the drop, 
aa/dt = O[(ao/ t ) (d / /d t ) ] ,  which implies a near balance of the radial forces. Hence 
p = and ao(t) - a(z, t )  << ao(t), giving a nearly cylindrical shape. Thus the stress 
boundary condition and the volume constraint (23) reduce to 

(57) 1 2  a * n = 3(a - a;). 

and 

The rounded endcaps of the drop and the rate of advance of the nose are quasi-steady 
and evolve slowly with ao(t). In particular, we find that 

a2/ 0 3  = 2 .  (58) 

(59) 
g 3  = cao and a(z, t )  = ao(t)F[(z - / ( t ) ) / u ~ ( t ) ] ,  
dt 
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FIGURE 3. The evolution of c = a ~ ~ d l / d t  and the curvature at the nose for a propagating inviscid 
finger. The initial shape is an ellipse with radius 1 and length 20. The inset shows that the bubble 
evolves to a steady shape with a rounded nose behind which it is nearly cylindrical. The velocity of 
steady translation, c = 0.12, determines the constant in (60). 

where the constant c and the shape F of the quasi-steadily translating nose are 
given by the steady translation of a semi-infinite finger of inviscid fluid (A = 0), with 
asymptotic radius a ---f 1 at large distances from the nose, driven by a normal stress 
i? - n  = i ( F 2  - 1)n. Equations (58) and (59a) can be integrated to obtain 

50c2 ' I 5  
/(t) = (-) t2I5. 

In order to determine the value of c, we adapted the numerical scheme described 
in 97 by imposing the stress i ( F 2  - 1)n only on the right-hand half of the drop so 
that it resembled a propagating finger. Starting from a long elliptical shape with 
radius a. = 1, the boundary integral equation (61) was solved numerically and the 
translation speed dt/dt and shape of the nose followed until a quasi-steady state was 
established. The constant c in (60) follows from the long-time value of a ~ ~ d / / d t .  
A typical numerical simulation showing how an initially elliptical shape ( / / a ,  = 20) 
evolves to a steadily propagating finger is shown in figure 3. From these results we 
find that c w 0.12. 

7. Numerical solutions using the boundary-integral method 
7.1. Numerical method 

In order to test some of our analytical predictions we solved the unbounded ax- 
isymmetric free-boundary problem numerically using a boundary-integral method 
(e.g. Rallison & Acrivos 1978; Pozrikidis 1992; Tanzosh, Manga & Stone 1992), the 
details of which follow closely those described in Stone & Leal (1990). 

In the dimensionless variables introduced in 94, the interfacial velocity is given by 
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FIGURE 4. The shape of an initially spherical drop at various times for 1 = 1. (a) $A9 = 30 and 
t = 0, 60, 180, 300, 420, 660 and 960. A steady shape is established and / /a0 is within 1% of the 
theoretical value of 5.67. ( b )  $A9 = 2000 and t = 0, 50, 150, 350, 700, 1000, 1300, 1600, 1850, and 
2100. A steady shape (equilibrium / / a o  = 333) has not yet been reached. 

the second-kind integral equation 

where x, E S and the effects of interfacial tension are included. The evolution from 
an initial spherical shape is followed by calculating the interfacial velocity from a 
discretized version of (61), moving marker points distributed along the interface 
with the local normal component of velocity, and then repeating the procedure 
while maintaining the marker points evenly redistributed along the interface. In the 
special case il = 1 the interfacial velocity is particularly straightforward to calculate. 
Typically, for modest distortions ( / /a0 < 10) 99 marker points along the length of 
the drop were used and for larger distortions 139 points were used. 

In order to study large aspect ratios, many time steps were necessary. In general, 
one might expect that the inevitable small numerical errors could produce small, but 
cumulative, changes in the drop volume, which would lead to systematic error in / ( t )  
since the centrifugal driving force is proportional to the cross-sectional area. However, 
even for numerical calculations involving many thousands of time steps, the volume 
changes for simulations with A 2 1 were typically less than 1%, and hence it was not 
thought necessary to rescale the volume. As shown below, steady-state shapes are in 
excellent agreement with exact theoretical solutions of Rosenthal (1962), confirming 
the accuracy of the calculation. In simulations with il < 0.1, volume changes were 
more significant at long times so rescaling was used to enforce constant drop volume. 

7.2. Numerical results and comparison with the analytical predictions 
We first show in figure 4 the transient evolution of two initially spherical drops with 
Bond numbers = 30 and 99 = 2000, and viscosity ratio il = 1. For the moderate 
Bond number (figure 4a) the final length (at t = 960) is nearly a steady state and 
is within 1% of the analytical result given by Rosenthal (1962). Calculations at this 
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FIGURE 5. Length versus the scaled time t / (  1 + A) for Bond numbers 8 = 10,30,100 and viscosity 
ratios I = 0.1 (dashed), 1 (solid), 10 (dotted). Analytical predictions for the steady-state length 
are shown by the arrows. All the simulations except for 9l = 100 have attained steady shapes 
independent of the viscosity ratio and within 1% of the theoretical steady state. 

Bond number with different viscosity ratios have a qualitatively similar evolution 
since the final steady state of the system is a rigid-body motion independent of A. For 
the large Bond number (figure 4b) the drop has not yet reached a steady shape in the 
final calculation shown (at t = 2100) since the length evolves rather slowly, O ( t  In t)'I4 
according to the slender-body theory in $3.2, and the equilibrium aspect ratio would 
be approximately / / a o  = 333. 

In figure 5 we illustrate the increase in length / ( t )  for various Bond numbers and 
viscosity ratios. Scaling time with the viscosity ratio according to t / (  1 + A) provides 
an approximate collapse of simulations for the same Bond number at modest aspect 
ratios, indicating that the initial transient evolution tends simply to be dictated by 
the more viscous fluid. The results show both the initial independence of the Bond 
number due to the weakness of interfacial tension and the final independence of the 
viscosity ratio in the steady state. Establishment of the final equilibrium shape takes 
a rather long time since the rate of extension slows down rapidly from its initial O( 1) 
value. 

For large Bond numbers, intermediate viscosity ratios and large aspect ratios, 
we expect the rate of extension and thinning to be similar to the predictions of 
the asymptotic analysis presented in $4.1 and Appendix B. We compare numerical 
simulations for the case 98 = 2000 and A = 1 with the leading-order solution and 
higher-order correction for the length and shape in figures 6 and 7. The numerical 
results for the length approach the similarity solution at long times. The numerical 
shape (for / ( t ) / a o ( t )  rn 21.5) also compares well with the lubrication predictions, with 
the differences, not surprisingly, largest near the end of the drop. For both the 
length and the shape, the higher-order correction from Appendix B gives a modest 
improvement in the agreement, though we note that further corrections involve an 
only slowly convergent expansion in inverse powers of ln(//ao). 

The solution for high viscosity ratios ( $ 5 )  is compared with numerical simulations 
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Time, t 
FIGURE 6. Length and equatorial radius versus time (solid curves) compared with the long-time 
pseudo-similarity solution for an intermediate viscosity ratio : B = 2000, for which the equilibrium 
aspect ratio is 333, and i = 1. The leading-order approximation (dotted) is given by equations (33) 
and (34), and the first correction (dashed) is given by equations (B10) and (B11). 
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FIGURE 7. Comparison of the pseudo-similarity solution H ( q  ; t )  with a numerically calculated 
drop shape (solid curve): B = 2000,i = 1, t = 1300 and /( t) /ao(t) w 21.5. The leading-order 
approximation (dotted) is given by equation (31) and the first correction (dashed) is given by 
equation (B10). 

for various values of /z in figure 8. We see, in particular, that for sufficiently large 
L choosing the constant in (52) as t ( t )  = t/181 + 1.2 gives excellent agreement 
with the numerical solutions over an intermediate range of aspect ratios. When the 
drop is extended to aspect ratios t / a ,  = O(/z'/2), equivalent to t = O(1'l3), there 
is a transition to the slower rate of stretching given by the asymptotic regime of 
intermediate viscosity ratio. 
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t 
FIGURE 8. Length versus time (solid curves) compared with the long-time similarity solutions for 
large viscosity ratio (equation (52)  with const. = 1.2; short dashed) and intermediate viscosity ratio 
(equation (B11) with I = a; long dashed): = 4000 and I = 20, 50, 150, 500 and 2000. The 
solution for large viscosity ratio is appropriate when 1 << / << I l l 3 ,  which is barely attained for the 
smaller values of /z but represents a significant regime for the larger values. 

8. Discussion 
In this paper we have analysed centrifugally driven deformation of a drop immersed 

in a denser rotating fluid. When surface tension is weak the rate of deformation is 
dictated primarily by the viscosity ratio i and the aspect ratio [ /ao,  and an interesting 
variety of asymptotic regimes has been found and examined. These regimes correspond 
to different mechanisms of resistance to extension being dominant. As the viscosity 
ratio varies from very low values to very high values at a fixed large aspect ratio, 
the dominant resistance becomes successively associated with the propagating nose 
pushing external fluid out of the way, with Poiseuille flow of the internal fluid along 
the axis of the drop, with shear flow in the fluid external to the drop and with 
uniaxial extension of the internal fluid. It may thus be useful to describe these 
different dynamical regimes as the bubble, pipe, sliding-rod and toffee-strand limits, 
respectively. The ordering of the pipe and sliding-rod regimes is curious since an 
increase in the internal viscosity causes the external viscosity to become the more 
significant owing to an increasing dominance of the shear around the drop over that 
within it. 

The asymptotic rate of extension in each of these regimes can be obtained by 
scaling analysis, as described in 93 and summarized in table 1. Since the division 
between the regimes depends on the aspect ratio as well as the viscosity ratio, a 
given drop may move from one regime to another as it extends and its aspect ratio 
increases (figure 2). In particular, the length of a low-viscosity drop initially increases 
like t2/* while the dominant resistance comes from the nose pushing fluid out of 
the way, but at longer times the extension slows to t1/4 as the dominant resistance 
changes to the internal shear stresses induced by flow along the drop. Conversely, the 
length of a high-viscosity drop initially increases like t while the dominant resistance 
comes from axial stretching of the internal fluid, but at longer times the dominant 
resistance comes from shear in the external fluid and so there is a transition to a 
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Centrifugally driven spreading Buoyancy-driven spreading 

Resistance Regime /(t) Regime R(t) 

External shear l/ln(d/a) << 1 << (//a)' (tln t)'I4 h/R << 1 << R/h t'I5 

Internal strain (//a)2 << a tl1 R/h << 1 (t/1)"2 

Nose push 1 << a / /  $15 1 << h/RIn(R/h) ( t  In t)'15 

Internal shear a / /  << 1 << l/ln(//a) (t/1)'I4 h/Rln(R/h) << 1 << h/R (t/1)' I8 

TABLE 1. Various asymptotic regimes in the problems studied here and in Koch & Koch (1995). 

slower (tlnt)1/4 extension. The logarithm appears since a cylinder of radius a0 and 
half-length 8, sliding axially through a viscous fluid, generates an external velocity 
field which decays on the lengthscale a0 ln(8lao) rather than ao. 

We have used an asymptotic analysis of the integral representation of Stokes flow 
to arrive at equations for the evolution of the drop shape and shown how analytical 
solutions for both intermediate and high viscosity ratios may be obtained. The 
asymptotic solutions are in good agreement with the full boundary-integral numerical 
solutions reported here. Unfortunately, we have not been able to compare the 
predictions with the few published experimental results since these have typically not 
been performed in the parameter regime appropriate to the asymptotic analysis. 

The analysis of the intermediate regime blended lubrication theory with an integral 
representation of the external flow in a similar spirit to Lister & Kerr (1989); a related 
study combining these two ideas is reported by Davis, Schonberg & Rallison (1989) 
in a study of the lubrication force between two spherical drops. Here, it is satisfying 
that many of the analytical tools for viscous flow - lubrication theory, slender-body 
theory, viscous-thread theory, drop dynamics and integral representations - find a use 
in different aspects of the same problem. 

It is instructive to compare our analysis of centrifugally driven axial extension of 
a drop to a recent study (Koch & Koch 1995) of buoyancy-driven radial spreading 
of a drop beneath a horizontal free surface. For the latter problem, the driving 
buoyancy force is O(Apgh2R), where R is now the drop radius, h is the thickness (with 
h << R) and the constant volume is O(R2h). Analogously to the spinning drop, the 
dominant resistance to radial spreading can be the push at the rim of the current, the 
internal shear, the external shear or the internal radial extension, for which the force 
estimates are O(pUUR/ ln(R/h)), O(ApUR2/h), O ( p U R )  and O(ApUh) respectively. A 
balance of the driving force with the dominant resistance thus gives the asymptotic 
spreading rates summarized in table 1. The logarithm in the first regime (low viscosity 
ratio; nose push), arises since the rim of the drop appears as an expanding ring of 
force so that the nearby flow is nearly two-dimensional and varies on the lengthscale 
O(h ln(R/h)). The range of the second regime (intermediate viscosity ratio; internal 
shear) is very narrow for buoyancy-driven spreading and was not analysed by Koch 
& Koch (1995). The second regime is much wider for the spinning drop and the 
logarithms appear for a different reason in the third regime. Hence, while there 
are clear analogies between the two problems, the difference in geometry leads to 
significant differences in behaviour and analysis. 

Finally, we observe that the present analysis provides a framework for studying 
capillary breakup of a thread in fluid-fluid systems (Lister, Stone & Brenner 1996). 
This subject has been re-examined recently by Eggers (1995) and Papageorgiou 
(1995) with particular emphasis given to the structure of the solution near the point 
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of pinching. To date the theoretical analyses have been limited to the limit of large 
viscosity ratio, representative of a fluid thread in an inviscid environment, and the 
theoretical approach described in this paper proves useful for studies of the role of 
the outer fluid. 
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Appendix A. Asymptotic evaluation of the K-integral 
A. 1. Leading-order contribution 

We wish to evaluate the integral Js n(y)  K ( x ,  y )  u(y)  dS, for slender axisymmetric 
shapes, where K ,  n and y are given by (17) and (18) and x = (O,O, z )  is a point on the 
centreline. 

We denote the surface velocity by 

u(y )  = (u,  (a@, t) ,  2, t )  cos 0, u, ( ~ ( 2 ,  t) ,  2 ,  t )  sin 8, u, (a(?, t),  2, t ) )  (A 1)  

and note that 

x - y  = (--acosQ,-asinO,z - 2 ) ,  
aa 

n * (x - y )  = -a - (z - 2 ) - ,  
a5 

(x - y )  'U = -uu, + ( z  - q u , .  

Thus, after a little algebra, the z-component of the integral becomes 

(z - Z) (u,(z - e )  - u,a) (a  + (z - z)aa/ae) 
a d2 . (A 5) 4 L,, [a2 + ( z  - z)'] 5'2 

Since u, = O(u,a//), the integral may be simplified slightly by neglecting the u, term, 
which introduces an error O ( ( a ~ / t ) ~ ) .  

We now break the range of integration into two parts and consider the integral for 
13 - zI = O(a)  and a << 12 - zI << t. We thus observe that the integral is dominated 
by the small region IZ - zI = O(a).  For comparison, logarithms tend to appear when 
an integral is dominated by the contribution from a << 1.2 - zI << 8. We further 
assume that the unknowns u, (a(z, t),  z ,  t )  and a(z, t) vary on the lengthscale t ( t )  rather 
than on the small scale a. Thus, in the small region IZ - zI = O(a), we can write 
a + (z - z)da/& = a. Hence, by using the substitution Z - z = a(z)s and extending 
the range of integration to s = +_a, we find that the integral is given asymptotically 

or 

n - K u dS, = u, (a(z, t) ,  z, t )  e,. 
I S ( , ,  
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It should be noted that the neglect of terms involving the radial velocity and the use 
of a slowly varying assumption for the unknowns in the integrand of (A 5) introduce 
errors in (A 7) that are 0 ((ao/Q2 In (t?/uo)) compared to the term retained. These 
terms are calculated in 5A.2. 

It is also possible to derive (A7) by a simple alternative argument. Once it is 
recognized that the dominant contribution to the value of the integral is local in 
character, then with the slenderness assumption (lu,l << lu,l) and the fact that u, is 
slowly varying, we may write u(y) = e,u,(x,) where x, = (a(z), 0, z )  is a surface point 
near x = (0, 0, z). Hence, 

n * K - II dS,, = (l(,, n * K dS, )  * e,u,(x,). 1,‘) (A 8) 

Using the Divergence Theorem and the fact that V,, - K = /6(x - y ) ,  we thus quickly 
regain (A7). 

A.2. The 0 ( In ( / / a ) )  correction 

It is possible to proceed to higher order in the asymptotic evaluation of the K-integral. 
This analysis is important for viscous threads since some small terms jump order in 
the large4 limit. 

We begin with (A5), again neglecting the u, term since the 0(a;/e2) correction is 
smaller than the additional correction we now calculate. Writing 

we expand the numerator of the right-hand side in a Taylor series about 5 = z .  Since 
all integrals odd in (z - 2 )  integrate to zero, the leading-order behaviour is 

where we have used the assumption that the functions uz(r,z, t )  and a2(z, t )  are slowly 
varying. The first integral is dominated by a local contribution from z = 2 and was 
evaluated in (A6). The second and third integrals are the same and are dominated by 
global contributions from the region a(z, t )  << Iz - 21 << / ( t )  and so give logarithms 
(Hinch 1991), as in (24). Consequently, we obtain 

u,- In(€-’) , u,+-- ~- 
2az ( aZ aa2) aZ 
3 a a(uza2) 

where we have neglected an 0 ( a 2 / t f 2 )  correction to the first integral in (A10) since 
this additional term is asymptotically smaller than the In (c’) term. 

In $5 we observed that in the limit of large viscosity ratio the interior velocity profile 
becomes nearly uniform across the thread cross-section so that uz(r,  z, t )  FZ U(z, t) ,  in 
which case we may conclude 
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Substituting (A 12) into (16) and simplifying the J-integral as before, we now obtain 

instead of (21). Therefore, for 1 >> ( . t / a ~ ) ~  / 1n(c1), we have 

which shows resistance with (Trouton) viscosity 311 to motion driven by the axial 
pressure gradient ( 1/2)aa2/az in agreement with (49). 

Appendix B. Higher-order corrections to the similarity solution of $4.1 
The first correction to the pseudo-similarity solution (31) and (32) is only logarithmi- 
cally smaller and it may be desirable to include it in order to improve the accuracy 
of the solution. We begin by rewriting (22) as 

I d  
4 dv dt aL 

dL a ln(Hqi) - t? [$(qH)] (qH) + tH- 

where H and r j  are defined in (27), 

f = V n  t- and L = ln(e-'), (B 2) 
-112 318 

and we have retained all the terms previously neglected in the leading-order analysis 
leading to (28). We note that the previous expression (25) for the slenderness 
parameter e agrees with the more careful definition in (B2) at leading order. 

The leading-order solution H2(q; E) - (1 -q2)/L obtained in $4.1 involved only the 
first terms on the left- and right-hand sides of (B l), which are 0(L-'l2). As a result of 
(29), a ln(Hqi)/aL is O(L-2) rather than the expected O(L-') and so the second term 
on the left-hand side can be neglected at O(L-3/2). From the leading-order solution 
r j n  cc L1I4 and E a (t In t)3/8 and hence 

dL l d e  3 ___ dlnq, N -- 1 dL and - 
dt 4L dt - dt f dt 8t' 

Thus we may integrate (B 1) to arrive at 

- y l - - q = -  (B 4) 
dH2/dq (1 - 211) dH2 

dq + ~- 
81 dq 8L 's' -1 [e2H(q) + (q  - 7)2] ' I2 

where the integration constant has been set equal to zero since H(q) should be an 
even function. As might be expected by analogy with other slender-body problems 
(e.g. Hinch 1991), the correction terms are a factor 1/L smaller than the leading 
terms. 

We thus seek H(q;e) as an asymptotic expansion of the form 
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where H t  = 1 - q2.  Substituting into the integral in (B4), we find that 

where the first term on the right-hand side arises from HO and the second term is 
derived in the same manner as (24). 

The first term may in fact be evaluated exactly and then expanded for small E to 
give 

1 -qsinh-' (:&:) ___ + (e2H + (1 - q)2)1/2 - (e2H + (1 + q)2)1/2 

2(1n2-1)+In 

Hence, (B4) is satisfied at 0(1) and yields 

+ i l n L  q + i q l n ( l - q 2 )  (B8) 1 -= dHf [-:+2(1n2-1)+-- (1 - 21) 
dv 21 

at O(L-'). Integration subject to H1 + 0 as q + 1 gives 

Thus we obtain an approximation to the shape in the form 

- 1-' - In( 16L) - In( 1 - q 2 )  
H ( q ; E )  = (?)li2 { 1 + 8L 

Finally, the correction to qn(t)  is found from (29) to be 

qn(t) = (2) ' I 2  ~ 5 ' ' ~  { 1 + & [ y  - 
where 

1 

C = - 1 (1 - q2)1/2 In (1 - q') dq w 0.30339. (B 12) 

Appendix C. A 'darn-break' solution for a half-filled cylinder 
In some implementations of a spinning-drop tensiometer it is reasonable to suppose 

that the lighter fluid may initially occupy one end of the cylindrical working volume 
rather than start as a drop suspended on the rotation axis. It is thus of interest to 
consider the 'dam-break' solution of (43) which has initial conditions 

a(z,O) = A  in z < 0 and a(z,O) = 0 in z > 0.  

The solution may be written in the form a2(z,t) = A2a([) where [ = z / t1 /2 ,  so that 
the governing equation is 

(C 1) 

- ;la' = (D(a)a')' , (C 2) 
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FIGURE 9. Dam-break similarity solutions to (43) for L = 0, h, 1, 10 and co. 

with 

(1 - a)2 

1 - (1 - P ) a 2  ’ A =  

where primes denote differentiation with respect to c. 
The nonlinear ‘diffusivity’ D has the limiting forms 

D - fa2 In(@-’) as a -+ 0 and 

Thus (C2) supports solutions in which a -+ 0 or a -+ 1 at a finite value of c. Most 
of these solutions correspond to a point sink at a = 0 or a ring sink at a = 1. The 
alternative behaviour as [ -+ +a is a -+ a,, where a, is a constant, corresponding 
to a pre-existing infinite layer of fluid. On the border between these two forms 
of behaviour, as the sink strength -+ 0 and as a, -+ 0 or 1, are solutions which 
correspond to a propagating front. The desired unique solution that satisfies the 
initial conditions (C 1) is that which has a propagating front at both a = 0 and a = 1. 
Numerically determined solutions are shown in figure 9 for various values of 1. 

D - $(l - a)3 as a -+ 1. (C 5 )  
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